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Abstract

Generalizations of existing models of chromatography allow the spatial and temporal progressions of all spatial statistical
moments in linear chromatography to be given as the solution to a set of ordinary differential equations. Basic strategies of
simplifying these equations are described.  2001 Published by Elsevier Science B.V.
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1. Introduction ≠c ≠ ≠c ≠vc
] ] ] ](x, s) 5 D(x, s) (x, s) 2 (x, s) (2)
≠s ≠x ≠x ≠x

One of the most fundamental models of chromato-
This equation is essentially Fick’s Second Law withgraphic behavior is based on a one-dimensional
an additional term to account for the bulk displace-system where migration is modeled as a bulk dis-
ment of solute. Based on this equation, Blumberg hasplacement and dispersion is modeled as an effective
been able to describe generally the spatial variancediffusion process [1]. The basic assumption govern-
of a zone migrating through a linear medium undering this model is that
temporally and spatially changing conditions [2].
This theory gives the progression of spatial variance≠c

]j(x, s) 5 v(x, s)c(x, s) 2 D(x, s) (x, s) (1) as the solution to the following ordinary differential≠x
equation:

where j is flux, v is the displacement velocity, c is
2concentration, D is the effective Fick diffusion ds ≠ ln u2]] ]]5 H(z, t) 1 2s (z, t)coefficient, x is longitudinal space, and s is time. dz ≠x

Applying the equation of continuity to Eq. (1) gives ≠H ≠ ln u2 ] ]]1 s (z, t) (z, t) (3)the partial differential equation that is the current ≠x ≠x
model of chromatography under spatially and tempo-

2where s is the spatial variance of the zone, z is therally varying conditions [1,2]:
spatial zone centroid, t is the time required for the
centroid to reach position z, H is the local height*Corresponding author. Tel.: 11-919-966-5071; fax: 11-919-
equivalent of a theoretical plate (local HETP) [2],962-1381.

E-mail address: jj@unc.edu (J.W. Jorgenson). and u is the net solute velocity due to displacement
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`and any spatial variation of diffusivity [3]. Less
general forms of Eq. (3) have also been derived m ;E c(x, t) dx (4)0

[3–6], and these equations have been used success- 2`

fully to predict spatial zone variances in linear where c is the one-dimensional concentration of
solvent strength gradient liquid chromatography [4,7] solute, i.e. amount of solute per length of column.
and reversed-phase alternate-pumping recycle liquid All remaining instances of concentration in this
chromatography [6,8,9]. However, these theories manuscript are in the context of one dimension. The
address the progression of spatial zone variance only zeroth moment can thus be interpreted as the total
(i.e. the second normalized central moment). Higher amount of a solute in the system.
order moments, which describe the skew, excess, and
other fine features of the zone, have been largely

2.1.2. First normalized momentignored.
The first normalized moment m is given by [11]1Lan and Jorgenson have recently demonstrated

`that the spatial progression of all temporal statistical
1moments can be stated as a set of ordinary differen- ]m ; E xc(x, t) dx (5)1 m0tial equations [10]. These equations describe how the 2`

temporal profile of the peak evolves as it is detected
which can be interpreted as the average distanceat progressive points along the column. The general
traveled by the solute by the detection time. Let ustreatment of temporal statistical moments in this
also denote the first normalized moment as thetheory relies on the Taylor series expansion of
spatial centroid z:functions that describe migration and dispersion. The

goal of the current work is to apply the same z ; m (6)1

mathematical strategy to Blumberg’s developments
The time necessary for the spatial centroid to reachso that the spatial and temporal progression of all
the detector is nearly equal to the retention time inspatial statistical moments can also be stated as a set
almost all practical cases. (Retention time is usuallyof differential equations. These equations can then be
defined as the time corresponding to the peak’sused to describe how the spatial profile of the
maximum signal at the end of the column.)chromatographic zone evolves with respect to time

or with respect to its position in the column.
2.1.3. normalized central moments

The n-th normalized central moment m is givenn

by [11]
2. Theory

`

1 n¯ ]m ; E (x 2 z) c(x, t) dx (7)n m02.1. Statistical moments 2`

Note that the zeroth and first normalized central
The statistical moments considered in this work

moments are constants:
are determined by measuring the spatial profile of

m̄ 5 1 (8)concentration at a given detection time t. Please note 0

that the detection time is the independent variable,
i.e. it is the time chosen to observe the spatial profile m̄ 5 0 (9)1

of the zone. All statistical moments are thus implicit
These quantities should not be confused with thefunctions of the detection time. Let us assume that
zeroth moment and first normalized moment (cen-all statistical moments are bounded (Appendix A).
troid), as given by Eqs. (4) and (5), respectively. In
accordance with convention, we may denote the

2.1.1. Zeroth moment second normalized central moment as the spatial
2The zeroth moment m is given by [11] zone variance s :0
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2 ¯s ; m (10) which is the relationship between local HETP and2

diffusion coefficient that has been used previously
[2]. Let us assume that local HETP and net solute2.2. Net rate of migration
velocity are known functions, so that the diffusion
coefficient is also a known function. Let us alsoWhen there is a spatial gradient of the diffusion
assume that the diffusion coefficient is positive,coefficient, one side of the zone broadens more
bounded, continuously infinitely differentiable inrapidly than the other side. This asymmetric disper-
space, and independent of concentration.sion of the zone modifies its spatial centroid and thus

contributes to the velocity of the spatial centroid.
Blumberg and Berger have shown that such a spatial 2.4. Temporal rates of statistical moment change
gradient of the diffusion coefficient contributes to the
net velocity u of the solute by [3] The progression of a statistical moment is com-

pletely specified by the initial value of the moment≠D
]u(x, s) ; v(x, s) 1 (x, s) (11) and the rate at which the moment changes. Finding≠x

convenient expressions for the temporal rates of
Let us assume that the net velocity is positive, statistical moment change thus provides a foundation
bounded, continuously infinitely differentiable in for the prediction of statistical moments.
space (i.e. everywhere differentiable at any order
with respect to space), and independent of con-

2.4.1. First normalized momentcentration (i.e. the chromatographic medium is
The rate at which the spatial centroid increaseslinear). Incorporating Eq. (11) into Eq. (2) yields Eq.

with detection time is equivalent to the concen-(3)
tration-weighted average of net velocities [2]:

2
≠c ≠ Dc ≠uc

`] ]] ](x, s) 5 (x, s) 2 (x, s) (12)2≠s ≠x dz 1≠x
] ]5 E u(x, t) c(x, t) dx (15)dt m0

2`2.3. Relationship between diffusion coefficient and
local HETP

If the function u can be accurately expanded about
x5z as a Taylor series, Eq. (15) can be restated inThe modern definition of local HETP (local plate
terms of normalized central moments (Appendix C):height) H is given by Blumberg [2]:

` mm̄dz ≠ u2 nds ] ] ]]5O ? (z, t)mdt m!]] ≠xH(x, s) ; lim (13) m50
2 dzs →0

2¯ ¯m m≠ u2 32 ] ] ]5 u(z, t) 1 0 1 ? (z, t) 1where s is the spatial variance of a zone if it were 22 6≠xlocated at x at time s. The local HETP is the spatial
3

≠ urate at which the variance of a zone would increase if
]? (z, t) 1 ? ? ? (16)3it were injected as a delta function at position x at ≠x

time s. Such a zone is infinitesimally wide, so its rate
This equation cannot be solved alone because theof broadening is unaffected by spatial gradients of
normalized central moments are unknown functionsretention. The local HETP can thus be interpreted as
of the detection time.the sum of all band-broadening sources other than

that arising form spatial variations of retention [6].
Based on Eq. (13), it can be derived that (Appen- 2.4.2. Normalized central moments

dix B) The rate at which a normalized central moment
changes with respect to detection time is (AppendixH(x, s) u(x, s)

]]]]D 5 (14) D)2
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` (k2n12)1 n(n 2 1) ≠ Hu¯dm dz n(n 2 1) ] ]]] ]]]n ? ? (z, t), k 2 n $ 2 2n22 (k2n12)]] ¯ ] ]]]5 2 nm 1 E (x 2 z) B 5 2 (23)(k 2 n 1 2)! ≠xnkn21dt dt 2m 50
2` 0, k 2 n , 2 2

3 H(x, t) u(x, t) c(x, t) dx (k2n11)n ≠ u
` ]]]] ]]]? (z, t), k 2 n $ 2 1(k2n11)C 5 (k 2 n 1 1)!n ≠xnkn21 5]1 E (x 2 z) u(x, t) c(x, t) dx (17) 0, k 2 n , 2 1m0

2`

(24)
Since a factor of n exists in each term on the right

Eqs. (22), (23), and (24) respectively represent thehand side (rhs), the zeroth normalized central mo-
first, second, and third terms on the rhs of Eq. (18).ment is unchanged with the progress of time, which
Note that the second row (n51) of matrix L containsis consistent with Eq. (8). For the first normalized
non-zero elements, but the dot product of this rowcentral moment, a factor of n21 eliminates the
and the vector m is always zero (Appendix E). Wesecond term, and the first and third terms cancel via
may thus replace all elements in the second row withEq. (15). Thus, the first normalized central moment
zeroes to achieve the same result. Similarly, thealso remains unchanged with the progress of time,
second column (k51) contains non-zero elements,which is consistent with Eq. (9).
but these elements are multiplied by the first normal-If the functions Hu and u can be accurately
ized central moment, which is zero (Eq. (9)), whenexpanded about x5z into a Taylor series, Eq. (17)
the dot product is taken. We may thus also replacecan be restated in terms of normalized central
the elements in the second column with zeroes:moments (Appendix E):

A 1 B 1 C , n ± 1 and k ± 1` nk nk nk¯ ¯dm mdz n(n 2 1) L 5 (25)n m1n22 Hnk]] ¯ ] ]]] ]]] 0, n 5 1 or k 5 15 2 nm 1 On21dt dt 2 m!m50

m ` m For the remainder of this work, we will use thism̄≠ Hu ≠ um1n21
]] ]]] ]] equation instead of Eq. (21) to calculate elements? (z, t) 1 n O ? (z, t)m mm!≠x ≠xm50 L .nk

(18)

2.4.3. Ordinary differential equation system
The rate of change in the n-th normalized central

Eq. (19) describes the rates of change for all
moment can thus be written for any given n. The

normalized central moments, but this differential
collection of all such equations (0#n,`) can be

equation system is not complete because the matrix
written in matrix form:

is a function of two parameters: the spatial centroid
¯ ¯ and the detection time. Eq. (16) relates the spatialdm /dt L L L ? ? ? m0 00 01 02 0

centroid to the detection time in terms of all normal-¯ ¯dm /dt L L L ? ? ? m1 10 11 12 1
5 (19) ized central moments, so the combination of Eqs.¯ ¯dm /dt L L L ? ? ? m2 21 22 2201 2 1 21 2 (16) and (19) constitutes a complete differential

?: : : : ? :? equation system. It is interesting to note that this
differential equation system is nonlinear with respector, simply,
to statistical moments, despite that it describes a

m9 5 Lm (20) chemically linear chromatographic process.

where 2.5. Simplifications based on spatial moderation
L 5 A 1 B 1 C (21)nk nk nk nk

The basic strategies of simplifying Eqs. (16) and
dz (19) rely on the assumption of spatial moderation
]2 n , k 2 n 5 2 1A 5 dt (22) [3], i.e. any spatial variation in either Hu or u isnk 50, k 2 n ± 2 1 sufficiently gradual such that the sum of low-order
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terms in the Taylor series accurately represents the vide an important utility by serving as references to
original function in the domain about the zone. test the accuracy of further simplifications.

2.5.2. Low-order approximation2.5.1. Finite system approximation
Eqs. (16) and (19) may be further simplified byThe system of equations can be reduced to a finite

excluding terms that have derivatives above a certainsize by truncating references to normalized central
order h. Let us denote the resulting equations asmoments of orders greater than a given value. This
h-th-order approximations.task is easily accomplished by limiting the dimen-

sions of the matrix and vectors in Eq. (19) to a finite
value r, so that the matrix has dimensions of r3r 2.5.3. Linear equation system approximation
and the vectors have a dimension of r. Accordingly, The first-order approximation of Eq. (16) is
Eq. (16) must also be truncated so that only the first

dzr terms (up to order r21) in the Taylor series are
]5 u(z, t) (28)dtused. For example, at a dimension size of r55, Eqs.

(16) and (19) become
This equation indicates that the progression of the

2 3 spatial centroid, under spatially moderate conditions,¯ ¯m mdz ≠ u ≠ u2 3
] ] ] ] ]5 u(z, t) 1 0 1 ? (z, t) 1 ? (z, t) is relatively insensitive to the second- and higher-2 3dt 2 6≠x ≠x

order normalized central moments. The solution to
4m̄ ≠ u4 this ordinary differential equation gives an estimate] ]1 ? (z, t) (26)424 of the spatial centroid as a function of detection time.≠x

By using this function to relate the two parameters of
¯dm /dt0

matrix L, Eq. (19) becomes a linear differential¯dm /dt1

¯dm /dt equation system.For example, Eq. (27) can be ap-2

¯dm /dt1 3 2 proximated as a linear equation system by using Eq.
¯dm /dt4 (28). Furthermore, substitution of Eq. (28) into

0 0 0 0 0
elements L (fourth row, third column) and L0 0 0 0 0 32 43

2 3 2 4 31 ≠ Hu ≠u 1 ≠ Hu ≠ u 1 ≠ Hu 1 ≠ u (fifth row, fourth column) of Eq. (27) gives a 
] ] ] ] ] ] ] ] ] ]Hu 0 ? 1 2 ? 1 ? 1 ?

2 3 2 4 32 ≠x 6 24 3≠x ≠x ≠x ≠x ≠x cancellation of terms:
5 2 3 2dz ≠Hu 3 ≠ Hu ≠u 1 ≠ Hu 3 ≠ u

] ] ] ] ] ] ] ] ]0 0 2 3 1 3 1 3u ? 1 3 ? 1 ?  ¯dm /dt2 3 2 0dt ≠x 2 ≠x 2 2≠x ≠x ≠x
¯dm /dt2 1dz ≠Hu ≠ Hu ≠u

] ] ] ]0 0 6Hu 2 4 1 6 1 4u 3 1 4 ¯dm /dt2 2dt ≠x ≠x  ≠x
¯dm /dt1 23m̄0
¯dm /dt4m̄1

m̄ 0 0 0 0 03 (27)2

0 0 0 0 0m̄1 32
2 3 2 4 3

m̄ 1 ≠ Hu ≠u 1 ≠ Hu ≠ u 1 ≠ Hu 1 ≠ u 4
] ] ] ] ] ] ] ] ] ]Hu 0 ? 1 2 ? 1 ? 1 ?

2 3 2 4 32 ≠x 6 24 3≠x ≠x ≠x ≠x ≠x
5 2 3 2In Eq. (27), the functions Hu, u, and their partial ≠Hu 3 ≠ Hu ≠u 1 ≠ Hu 3 ≠ u ] ] ] ] ] ] ] ] 0 0 3 ? 1 3 ? 1 ?

2 3 2derivatives are evaluated at (z, t). ≠x 2 ≠x 2 2≠x ≠x ≠x
2A finite system approximation eliminates the ≠Hu ≠ Hu ≠u

] ] ]0 0 6Hu 6 3 1 4
2 ≠x ≠x fewest possible terms to make the system theoret- ≠x

m̄ically solvable for a given dimension size r, so the 0

m̄1solutions to these systems are presumably the most
m̄3 (29)2accurate for that dimension size. This accuracy,
m̄1 32however, comes at the cost of complexity. Unless
m̄4

further simplifications are made, it is usually very
difficult to solve these systems analytically. Nonethe- In general, these cancellations occur in elements L ,nk

less, numerical solutions to these systems can pro- where k2n521.



52 K. Lan, J.W. Jorgenson / J. Chromatogr. A 905 (2001) 47 –57

2.5.4. Triangular matrix approximation time, but they do not vary in space. Let us denote
All elements above the main diagonal (k2n.0) these systems as being spatially invariant. The

in matrix L contain only second- or higher-order theoretical treatment of spatially invariant systems is
derivatives of Hu and u. When the chromatographic greatly simplified because the spatial derivatives of
system is spatially moderate, these elements can be Hu and u are zero. As a result, Eq. (28) is exact for
approximated as zero, resulting in a triangular ma- these systems:
trix. For example, Eq. (29) becomes

dz 5 u(t) dt (32)
¯dm /dt0

¯dm /dt1 Eq. (18) is simplified to (Appendix G)
¯dm /dt2

¯dm /dt1 23 n(n 2 1)
¯ ]]] ¯dm 5 m H(t) u(t) dt (33)¯dm /dt n n224 2

0 0 0 0 0
Statistical moments can thus be calculated by inte-0 0 0 0 0

21 ≠ Hu ≠u  gration.
] ] ]Hu 0 ? 1 2 0 022 ≠x≠x Only a few practical systems of column chroma-

5 2
≠Hu 3 ≠ Hu ≠u tography are well approximated as being spatially ] ] ] ]0 0 3 ? 1 3 02≠x 2 ≠x≠x invariant [3]. Examples include isocratic liquid chro-

2
≠Hu ≠ Hu ≠u matography with relatively low pressure gradients
] ] ]0 0 6Hu 6 3 1 42  ≠x ≠x≠x and isothermal gas chromatography with relatively

m̄ low pressure gradients. Most practical systems of0

m̄1 isocratic liquid chromatography and isothermal gas
m̄3 (30)2 chromatography have relatively steep pressure gra-
m̄1 23 dients, which can lead to pressure-induced retention
m̄4 variations [6,12–16], frictional heating of liquid

mobile phase [17,18], and decompression of gaseousA linear differential equation system with a triangu-
mobile phase [19]. All of these effects producelar matrix can be solved much more easily because
spatial variations of solute velocity.the differential equations of the system are solved

sequentially instead of simultaneously. Note that a
first-order approximation of the matrix L always 2.6. Spatial progression of normalized central
results in a triangular matrix. For example, the first- moments
order approximation of Eq. (27) is

Solving the system of differential equations given¯dm /dt0

by Eqs. (16) and (19) (or any of their simplifications)¯dm /dt1

yields the spatial centroid and normalized central¯dm /dt2

¯ moments as implicit functions of detection time.dm /dt1 23

¯dm /dt Normalized central moments, however, are conven-4

tionally given as functions of the spatial centroid, not¯0 0 0 0 0 m0

detection time. Since the relationship between the¯0 0 0 0 0 m1  ≠u spatial centroid z and detection time t is already] ¯Hu 0 2 0 0 m2≠x given in the solution, the conversion of independent5 (31)
≠Hu ≠u  ] ] ¯0 0 3 3 0 m variables for the normalized central moments relies3≠x ≠x

only upon finding the inverse of z(t):≠Hu ≠u
] ] ¯0 0 6Hu 6 4 m4  ≠x ≠x

¯ ¯m (z) 5 m (t(z)) (34)n n
2.5.5. Spatially invariant systems

In spatially uniform chromatographic systems, the Alternatively, Eq. (19) can be restated so that the
local HETP and net velocity functions may vary in spatial centroid is the independent variable:
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converted into their temporal counterparts. The in-¯ ¯dm /dz L L L ? ? ? m0 00 01 02 0
verse of z(t), which is t(z), is good approximation for¯ ¯dm /dz L L L ? ? ? mdt1 10 11 12 1

]5 the temporal centroid. In turn, the temporal centroid¯ ¯dm /dz L L L ? ? ? mdz2 21 22 2201 2 1 21 2 evaluated at the detector position is a good approxi-
?: : : : ? : mation for the retention time. The spatial variance is?

2easily converted to temporal variance t by the(35)
following well-known approximation:

The solution to Eqs. (16) and (35) gives the spatial
2 2 2

t 5 s /v (z, t) (36)centroid as an implicit function of detection time and
the normalized central moments as implicit functions
of the spatial centroid. All of the simplifications Unfortunately, modern chromatographic theory
described earlier can also be applied to Eq. (35). For cannot convert higher-order (n.2) spatial statistical
example, Eq. (3) can be derived from Eq. (35) based moments into temporal statistical moments unless the
on these simplifications. (Appendix H). medium is both spatially and temporally invariant

[10]. This limitation of spatial statistical moment
theory is serious because almost all chromatographic
detectors measure the zone’s temporal profile, not3. Discussion
spatial profile. Nonetheless, future developments in
theory may permit conversions between high-orderThe limitations of spatial statistical moment theory
spatial and temporal statistical moments.are implicitly given by the assumptions used in its

derivation. Since many of the assumptions used in
the work are nearly always accurate in practical

3.3. High efficiencychromatography, only the assumptions that may have
important practical implications are discussed below.

Since chromatographic dispersion is modeled as
effective diffusion process in this theory, high ef-
ficiencies are necessary to ensure that individual3.1. Spatial moderation
dispersion sources behave in a diffusion-like manner
[1]. High efficiencies (.100) are achieved in rela-In order to solve the system of differential equa-
tively short distances (,2% of the column length) intions given by Eq. (16) and (19), spatial moderation
modern chromatographic systems, so this require-is always necessary. Unfortunately, there are a few
ment is not very prohibitive.practical systems of chromatography that are not

spatially moderate [4]. One example is step gradient
elution liquid chromatography, where the sudden

3.4. Radial homogeneitychange in mobile phase composition makes the
system both spatially and temporally immoderate.

Using a one-dimensional model of chromatog-Another example is a system where two different
raphy obviously requires the assumption that thecolumns are connected in series. Also note that
system has radial homogeneity, but this quality is notjunctions in a chromatographic system (e.g. between
perfectly exhibited in real chromatographic systems.a column and connective tubing) are also spatially
Deficiencies in radial homogeneity arise from effectsimmoderate, so the requirement of spatial modera-
such as poorly swept void volumes or radial varia-tion prohibits a chromatographic system from being
tions of flow velocity and efficiency. These effectsmodeled in its entirety.
contribute to zone asymmetry [20,21] in a manner
that cannot be included in the theory.

3.2. Conversion to temporal statistical moments It is also known that radial variations of flow
velocity and efficiency contribute to the broadening

The spatial centroid and spatial variance are easily of zones, and this effect is easily incorporated into
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This research was supported by the Natinal In-
3.5. Linearity of the chromatographic medium. stitutess of Heath under grant GM 39515. Kevin Lan

is supported by an American Chemical Society
The local HETP and net velocity functions are Division of Analytical Chemistry Graduate Fellow-

assumed to be independent of the concentration of ship sponsored by the Eastman Chemical Company.
any solute. This assumption allows the theory to be
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and it is also necessary so that the functions Hu and Appendix A. Implications of bounded
u and their spatial derivatives are known functions of normalized central moments
space, which is necessary to solve Eq. (16) and (19).
Linearity of the medium is generally a fair approxi- If all normalized central moments are bounded,
mation in analytical chromatography, where column the integrand of Eq. (7) must approach zero for large
overloading is actively avoided. magnitudes of x:

nlim (x 2 z) c(x, t) 5 0 (A.1)
ux u→`4. Nomenclature

for any order n.
A the component of L that accounts fornk nk The spatial derivative of Eq. (A.1) is

the shift in the spatial centroid
dc(x, t)B the component of L that accounts for n n21nk nk ]]S Dlim (x 2 z) 1 n(x 2 z) c(x, t) 5 0dxdispersion ux u→`

c one-dimensional concentration (A.2)
C the component of L that accounts fornk nk

net migration The second term in the limit is zero owing to Eq.
D Fick diffusion coefficient (A.1); the elimination results in
H local HETP

dc(x, t)nj one-dimensional flux ]]lim (x 2 z) 5 0 (A.3)dxux u→`L a matrix that relates m to m9

L the element of L in row n11, columnnk for any order n.
k11 It is theoretically possible to have an unbounded

m the vector of spatial normalized central normalized central moment for a zone [2]. Consider,
moments for example, a concentration profile c(x) that con-

m9 the derivative of m with respect to verges rationally to zero:
detection time

m spatial zeroth moment 10
]]]c(x) 5 (A.4)mm spatial first normalized moment1 (uxu 1 1)

m̄ spatial n-th normalized central momentn

r dimension size where m.2. The zeroth moment (peak area) and
s time first normalized moment (centroid) for this function

2
s spatial variance are always bounded. Nonetheless, this function does
t detection time not satisfy Eq. (A.1) for n$m, so unbounded

2
t temporal variance normalized central moments indeed exist for this
u net solute velocity zone. Fortunately, virtually all real chromatographic
v solute velocity peaks converge exponentially, not rationally, to zero,
x one-dimensional spatial coordinate so Eq. (A.1) is almost always valid in practical
z spatial centroid chromatography.
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Appendix B. Relationship between local HETP indicates that the dz /dt can be replaced by u. The
and diffusion coefficient resulting equation can be rearranged into Eq. (14).

The temporal rate of spatial variance change can
be stated as [3]

Appendix C. Incorporation of Taylor series into
`

2 the temporal rate of spatial centroid changeds 2
]] ]5 ED(x, t)c(x, t) dxdt m0

2` Substitution of Eq. (B.3) into Eq. (15) and re-
` arrangement yields2

]1 E (x 2 z)u(x, t)c(x, t) dx (B.1)
`m0 ` m m

2` dz 1 (x 2 z) ≠ u
] ] ]]] ]]¯ E O ? (z, t) c(x, t) dxS Dmdt m m! ≠x0The Taylor series of D and u about x5z are m50

2`

` m m `(x 2 z) ≠ D ` m1 ≠ u 1]]] ]]D(x, t) 5O ? (z, t) (B.2) mm ] ]] ]m! 5O ? (z, t) ? E (x 2 z) c(x, t) dx≠x mm50 m! m≠x 0m50
2`

` m m(x 2 z) ≠ u
(C.1)]]] ]]u(x, t) 5O ? (z, t) (B.3)mm! ≠xm50

The definition of normalized central moments (Eq.Substitution of these equations into Eq. (B.1) and
(7)) can then be applied to give Eq. (16).rearrangement yields

2 ` mds 1 ≠ D
]] ] ]]5 2 O ? (z, t)mdt m! ≠xm50

Appendix D. Temporal rate of normalized
`

` central moment change1 1m] ]? E (x 2 z) c(x, t) dx 1 2 O
m m!0 m50

2` The derivative of a normalized central moment
`

m (Eq. (7)) with respect to detection time is≠ u 1 m11]] ]? (z, t) ? E (x 2 z) c(x, t) dx (B.4)m m≠x 0 `
2` ¯dm 2 n dzn n21]] ]] ]5 ? E (x 2 z) c(x, t) dxThe definition of normalized central moments (Eq. dt m dt0

2`(7)) can then be applied to give
`

1 dc(x, t)2 ` m ` n¯ ¯m mds ≠ D ] ]]m m11 1 E (x 2 z) dx (D.1)
]] ] ]] ]]5 2 O ? (z, t) 1 2 O m dtm 0dt m! m!≠x 2`m50 m50

m
≠ u The first integral can be simplified by applying the]]? (z, t) (B.5)m
≠x definition of normalized central moments, and Eq.

(12) can be substituted into the second integral:For an infinitesimally wide zone, the first- and
higher-order normalized central moments are all `

dz 1zero, so taking the limit of very narrow zones leaves n¯ ] ]5 2 nm 1 E (x 2 z)n21 dt m2 2 0ds ds dz dz 2`

]] ]] ] ]lim 5 lim ? 5 H(z, t) lim
2 dt 2 dz dt 2 dt dD(x, t)c(x, t)s →0 s →0 s →0

]]]]S D3 d 2 u(x, t)c(x, t) (D.2)dx5 2D(z, t) (B.6)

In the limit of infinitesimally wide zones, Eq. (16) Integration by parts can be applied to the integral:
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` m¯dmdz 1 dz n(n 2 1) 1 ≠ Hun¯ ] ] ]] ¯ ] ]]] ] ]]5 2 nm 1 ¯ 2 nm 1 O ? (z, t)mn21 n21dt m dt dt 2 m! ≠x0 m50

x5` `dD(x, t)c(x, t)n 1U]]]]S S DD3 (x 2 z) 2 u(x, t)c(x, t) m1n22]dx x52` ? E (x 2 z) c(x, t) dx
m0` 2`

n dD(x, t)c(x, t)n21 `] ]]]] ` mS D2 E (x2z) 2u(x, t)c(x, t) dx 1 ≠ u 1m dx m1n210 ] ]] ]2` 1n O ? (z, t)? E (x2z) c(x, t) dxmm! m≠x 0m50
2`(D.3)

(E.2)
The second term evaluates to zero owing to Eq.
(A.1) and Eq. (A.3). The integral can be expanded: The definition of normalized central moments (Eq.

(7)) can then be applied to give Eq. (18).
dz

¯ ]5 2 nmn21 dt
`

Appendix F. Dot product of L and m is zeron 1kn21]2 E (x 2 z) d(D(x, t)c(x, t))
m0

2` The dot product of the second row (n51) of
`

matrix L and the vector m gives the change in then n21]1 E (x 2 z) u(x, t)c(x, t) dx (D.4) first normalized central moment:m0
2`

` k¯dm mdz ≠ u1 k
] ] ] ]Integration by parts can be applied to the first 5 2 1O ? (z, t) (F.1)kdt dt k! ≠xk50integral:
The first term on the rhs cancels the summation viadz n n21 x5`¯ ] ]5 2 nm 2 ((x 2 z) D(x, t)c(x, t))u Eq. (16), indicating that the first normalized centraln21 x52`dt m0 moment is a constant, which is in agreement with

`

Eq. (9).n(n 2 1) n22]]]1 E (x 2 z) D(x, t)c(x, t) dx
m0

2`

`

Appendix G. Temporal rate of normalizedn n21]1 E (x 2 z) u(x, t)c(x, t) dx (D.5) central moment change in spatially invariantm0
2` systems

The second term evaluates to zero owing to Eq.
If the local HETP and net velocity are functions(A.1). The diffusion coefficient D can be stated in

only of time, Eq. (17) can be restated asterms of local HETP (Eq. (14)), resulting in Eq. (17).

¯dm dz n(n 2 1)n
]] ¯ ] ]]]5 2 nm 1n21dt dt 2

Appendix E. Incorporation of Taylor series into `

H(t)u(t)the temporal rate of normalized central moment n22]]]? E (x 2 z) c(x, t) dxchange m0
2`

`

The Taylor series of Hu about x5z is 1 n21]1 nu(t) E (x 2 z) c(x, t) dx (G.1)
` m m m0(x 2 z) ≠ Hu

2`]]] ]]H(x, t)u(x, t) ¯O ? (z, t) (E.1)mm! ≠xm50 applying the definition of normalized central mo-
Substitution of this equation and Eq. (B.3) into Eq. ments (Eq. (7)) allows the first term on the rhs to
(17) and rearrangement yields cancel the third term, which leaves Eq. (33).
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Appendix H. Eq. (3) Is a special case of Eq. References
(35)

[1] J.C. Giddings, Unified Separation Science, Wiley, New York,
1991, pp. 37–54.At a dimension size of r53, Eq. (35) can be

[2] L.M. Blumberg, J. Chromatogr. 637 (1993) 119.restated as:
[3] L.M. Blumberg, T.A. Berger, J. Chromatogr. 596 (1992) 1.

2 2 2 [4] H. Poppe, J. Paanakker, M. Bronckhorst, J. Chromatogr. 204ds dt s ≠ Hu
]] ] ] ]]5 H(z, t)u(z, t) 1 ? (z, t)S (1981) 77.2dz dz 2 ≠x [5] W.A. Rubey, J. High Resolut. Chromatogr. 14 (1991) 542.

[6] K. Lan, J.W. Jorgenson, Anal. Chem. 70 (1998) 2773.≠u2 ]1 2s (z, t) (H.1)D [7] L.R. Snyder, J.W. Dolan, Adv. Chromatogr. 38 (1998) 115.
≠x

[8] J.A. Biesenberger, M. Tan, I. Duvdevani, T. Maurer, Polym.
Lett. 9 (1971) 353.The linear equation system approximation permits

[9] I. Duvdevani, J.A. Biesenberger, M. Tan, Polym. Lett. 9the replacement of dz /dt with u(z, t) via Eq. (28).
(1971) 429.

Upon distribution, [10] K. Lan, J.W. Jorgenson, Anal. Chem. 72 (2000) 1555.
[11] E. Grushka, M.N. Myers, P.D. Schettler, J.C. Giddings, Anal.2 2 2ds s ≠ Hu Chem. 7 (1969) 889.]] ]] ]]5 H(z, t) 1 ? (z, t)2dz [12] B.A. Bidlingmeyer, L.B. Rogers, Sep. Sci. 7 (1972) 131.2u(z, t) ≠x
[13] G. Prukop, L.B. Rogers, Sep. Sci. Technol. 13 (1978) 59.22s ≠u [14] V.L. McGuffin, C.E. Evans, J. Microcol. Sep. 3 (1991) 513.]]]1 (z, t) (H.2)
[15] J.E. MacNair, K.C. Lewis, J.W. Jorgenson, Anal. Chem. 69≠xu(z, t)

(1997) 983.
Expansion of the second partial derivative of Hu [16] M.C. Ringo, C.E. Evans, J. Phys. Chem. B 101 (1997) 5525.

[17] M. Martin, C. Eon, G. Guiochon, J. Chromatogr. 110 (1975)gives us
213.

2 2 ´[18] I. Halasz, R. Endele, J. Asshauer, J. Chromatogr. 112 (1975)ds s
]] ]]5 H(z, t) 1 37.dz 2u(z, t)

[19] J.C. Giddings, Anal. Chem. 35 (1963) 353.
2 [20] K. Miyabe, G. Guiochon, J. Chromatogr. A 830 (1999) 263.≠ u ≠H ≠u
] ] ]? H (z, t) 1 2 ? (z, t)S [21] J.C. Sternberg, Adv. Chromatogr. 2 (1966) 205.2 ≠x ≠x≠x [22] J.C. Giddings, Dynamics of Chromatography, Marcel

2 2 Dekker, New York, 1965.≠ H 2s ≠u
]] ]] ]1 u (z, t) 1 ? (z, t) (H.3)D2 ≠xu(z, t)≠x

A first-order approximation of this equation sim-
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